skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Follows, M. J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Glacial–interglacial cycles constitute large natural variations in Earth’s climate. The Mid-Pleistocene Transition (MPT) marks a shift of the dominant periodicity of these climate cycles from$$\sim 40$$ 40 to$$\sim 100$$ 100  kyr. Recently, it has been suggested that this shift resulted from a gradual increase in the internal period (or equivalently, a decrease in the natural frequency) of the system. As a result, the system would then have locked to ever higher multiples of the external forcing period. We find that the internal period is sensitive to the strength of positive feedbacks in the climate system. Using a carbon cycle model in which feedbacks between calcifier populations and ocean alkalinity mediate atmospheric CO$$_2,$$ 2 , we simulate stepwise periodicity changes similar to the MPT through such a mechanism. Due to the internal dynamics of the system, the periodicity shift occurs up to millions of years after the change in the feedback strength is imposed. This suggests that the cause for the MPT may have occurred a significant time before the observed periodicity shift. 
    more » « less